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Abstract. We develop a bosonization scheme for the collective dynamics of a spinless two-
dimensional electron gas (2DEG) in the lowest Landau level. The system is treated as a
continuous elastic medium, and quantum commutation relations are imposed between orthogonal
components of the elastic displacement field. The theory provides a unified description of bulk
and edge excitations of compressible and incompressible phases and allows the calculation
of the electronic tunnelling current, yielding results which are in good agreement with recent
experiments at the edge and in the bulk of the 2DEG.

The two-dimensional electron gas (2DEG) in a high magnetic field such that all the electrons
reside in the lowest Landau level (LLL) provides an extraordinarily rich laboratory to
test ideas about the ‘non-Fermi-liquid’ behaviour of strongly correlated electrons [1]. The
incompressible quantum liquid state introduced by Laughlin [2] to explain the fractional
guantum Hall effect [3] at rational filling factors; the pseudogap in the tunnelling density
of states observed at generic (compressible) densities [4]; the likely formation of a Wigner
crystal at low density [5]; and the realization [6] that the edges of this system behave as
a ‘chiral Luttinger liquid’ [7—9] at essentially all filling factors, are prime examples of this
richness.

A theoretical treatment of the system is notoriously difficult, since the electron—electron
interaction cannot be treated perturbatively. Several nonperturbative approaches have been
developed, such as the variational theory of Laughlin [2], extended to the collective
dynamics by Girvinet al [10], and, more recently, the boson or fermion Chern—-Simons
theories [11-14], which replace the original electrons with composite particles for which the
mean-field treatment is a reasonable starting point. All these theories are designed to work
best at some special, rational filling factors, such A3 1/2 etc. Another fruitful line of
attack has been the hydrodynamic treatment of density fluctuations: this allows bosonization
of the edge excitations of the 2DEG [15-17], but fails to reproduce the spectrum of collective
excitations in the bulk.

The purpose of this letter is to outline a novel approach to the linear dynamics of a
generaluniform or nonuniform distribution of electrons in the LLL. Unlike previous theories
[10-18], the present one treats bulk and edge excitations of compressible and incompressible
states on an equal footing. Under physically motivated assumptions, we shall argue that
the 2DEG is dynamically equivalent to a set of noninteracting bosons, and we shall give a
prescription for expressing the electron tunnelling operator in terms of these bosons [19].
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The basic idea of our approach is suggested by the similarity between the local
structure of the 2DEG in the LLL and that of a Wigner crystal (this fact was exploited
by Johansson and Kinaret [20] to set up an ‘independent-boson model’ for the tunnelling
spectral function; see also reference [18] for a derivation of their ‘independent-boson
model’ from diagrammatic many-body theory). In the absence of real crystalline order,
we propose to treat the electrons, at a macroscopic level, as a continuous elastic medium
characterized by an equilibrium densipg(r), and by a local elastic displacement field
u(7, t), such that the volume element which is located @t the ground state is found at
7 +u(r) in the excited state considered. The time-dependent density is, to first order in
u, p(, 1) = po(r) — V- [po(Pu(r, t)] = po(¥) + Sp (¥, t). We ignore the spin in this letter.
Under the assumption that both the equilibrium density and the displacemesioaly
varying on the scale of the magnetic lengtk= (hc/eB)Y/? (whereB is the magnetic field)
the effective long-wavelength Hamiltonian in the LLL is then

1 - =/ = 62 ~=1,=2 =7 =/
H= é/dr/dr 8p(r)<— —X (r,r))é,o(r)

=7

2

+ / dF 1 [po(] D [sa,s(ﬁ - %saﬁ : ﬁ(?)} (1)
a.f

where x ~1(7, 7') is the inverse of thgroper static density—density response function [21],

w is the shear modulus (discussed below), = [du, (F)/drg + dug(r)/dry]/2 is the strain

tensor, andy, 8 are cartesian indices. Equation (1) generalizes the Hamiltonian of classical

elasticity theory by [22] taking into account the long range of the Coulomb interaction, and

of x 7,7 in the incompressible states [10].

The second term of equation (1) is an essential and novel feature of the present approach.
The physical idea is that the strongly correlated electron fluid is very viscous: hence, the
time t during which a density fluctuation relaxes to equilibrium is much longer than the
characteristic timescale of the linear dynamics. It follows that, over a range of frequencies
1/t « o < €?/hl, the system should behave like an elastic solid, characterized by a
nonvanishing shear modulus and negligible dissipation. Only on a longer timesgale/'t
does viscous damping become important and the shear modulus drop to zero. In this letter
we shall assume that/t — 0, for long-wavelength fluctuations, sufficiently rapidly to
justify the use of the Hamiltonian (1) at essentially all relevant frequencies. We believe this
assumption to be fully justified for the incompressible states, since these are known to be
free of dissipation. It should also be qualitatively correct for general compressible states,
to the extent that the local structure of correlations resembles that of a Wigner crystal [23].

The algebra of the displacement operatatsu,, in the LLL, is deduced from the
canonical quantization condition for the hydrodynamical momentum and displacement fields

[pa(F), ug(F")] = —i8(F — )é,4, by projecting out the higher Landau levels, i.e. averaging
over the fast cyclotron motion. This leads to
[ue (P), up ()] = —i€asd (F = 7') 1%/ po(F) @

wheree,s is the two-dimensional Levi—Civita tensor.
Bosonization of (1) is accomplished by using

- l . = -
U (r) = —g5— Z (D18 ) + b} 8o ()] ©)
Po \I') n>0

whereb, andb] are boson operators, satisfying the usual algeb),[ab[i/] = 8, €tc. The
functions g, (F) (g%,(¥)), with n > 0, are the positive- (negative-) frequency solutions of
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the eigenvalue problem

/ Hop o 7)80s (7)) O = 0 gra(P) @)

which is equivalent to the classical equation of motion in the limit of infinite magnetic field.
(We adopt the convention of summing over repeated cartesian indices.) The of#yator
is given by

I . 2 P P 2
Hap (7, F') = =il pg/*(F)eay [0, 0 x G, )] 0g* ()

H 12 / ’ = =
allwen (950, — 0,0 + 8,49, 0, | [8(F — F')u] (5)

wherey (7, 7) = x ', 7') — ¢*/|F — 7’|, andd, andd; denote derivatives with respect
to r, andry respectively. It is Hermitian with respect to the scalar product

(frg) = / FrPieasgs () F

and its eigenvalues are therefore real. For each eigenfungtiavith positive eigenvalue
wy, there is a complex conjugate ogé = g_, with negative eigenvalue-w,. These
eigenfunctions can be chosen to satisfy orthonormality relatignsg,,) = sgn(n)s,.. (n
andm can now have either sign) [24]. The ‘completeness relation’ has the form

Z[gna (F)g:ﬁ(;:/) - g:a(?)gnﬂ (;/)] = ieﬂlﬂ8(7 - 7,) (6)

n>0

These equations guarantee that the commutation relation (2) is satisfied. Then, substitution
of equation (3) into equation (1) yields the Hamiltonian in the desired form

H =Y (blb, +1/2),.

n>0

Our next step is to construct the electron tunnelling operat()ﬁ). This operator is
expected to create a Gaussian density perturbation Reawrd no change in the vorticity

pv(?) = _Eaﬁaa[pO(?)Mﬂ(7)] [25]

[¥(R), p(M] = ¥ (R) expl-IF — R?/2%]/2n1? (7)
and [w(ﬁ), 0.(F)] = 0. The solution has the form
B — ool LS (Ma R, MR
W(R) - CR exp|: ;( w, bn w, bn>:| (8)

where the ‘electron—phonon’ matrix elemerm&(l?) are written as
M,(R) = /exp[—|? — RI?/21| M, (F) dF/2m1?

and

M,(7) i / 8o ()

= L [y 8 g tog )7 — 7| (©)
o~ 2 ) P

and C is an operator which commutes with the bosons and decreases the total particle
number by one [26]. A serious deficiency of the tunnelling operators is that they fail to
satisfy fermionic anticommutation rules at different points: this defect should not have
major consequences for the calculation of the tunnelling current, as long as the tunnelling
electron remains essentially distinguishable from the pre-existing ones.
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The calculation of the local Green’s functi@h(R, 1) = —i(Tv (R, t)¥ (R, 0)) can be
carried out by standard techniques [27, 20]. Here we simply report the zero-temperature
result for the integral equation connecting the electronic spectral funetigh ) (the
Fourier transform ofG (R, t)) to the collective excitation spectrum:

wA(R, ) =/ g(R, Q) AR, w — Q) dQ (10)
0
wherew > 0 and
. 1 S
g(R, Q) = 5;|Mn(1e)| 8(2 — w,) (11)

is closely related to the local dynamical structure factor of the liquid. The above equations
constitute a complete scheme for the calculation of single-particle and collective properties
of a general distribution of electrons in the LLL. We now discuss some specific examples.

(1) The uniform 2DEGLet pg be the uniform density. The normalized eigenfunctions
of equation (4) are

gL (F) = iql(11/ 2w, po) /%77 (12)
and

gir () = (q) ™ (g po/20) * 77 (13)
where

1/2
w0, = W2 (v(q) + ’“Lﬂ) (ql)? (14)
Lo
is the frequency of the mode at wavevedjow(q) is the Fourier transform of the electron—
electron interactionkK (¢) = —pg)z—l(q) is the g-dependent bulk modulus, and the labels
L (longitudinal) andT" (transverse) refer to the components parallel and perpendicufar to
The electron—phonon matrix element of equation (9) has the form

Kz (g) + 1
2

M, (F) = [v(q) +
0

e, as
wherep, = —iqlpé/zqu@) and

Kilq) = —0} [ 174G ~7)explid - ] o

(The reason for the apparently unnecessary subscrpll become clear below.)
We now distinguish two cases:

(i) The compressible caseim,_.oK(q) = K, is finite, and small compared to the
Coulomb repulsionp2v(¢g). The value ofu can be approximated by that of a classical
Wigner crystal, namelyy ~ u. = 0.0977%(¢?/1)vY/? [28]. The long-wavelength modes
have frequencies, o ¢*2 for Coulomb-like interactionfv(q) = 2re?/q) andw, o g2 for
short-range interactiofu(q) = ¢d). The low-frequency behaviour (where ‘zero’ frequency
is the chemical potential) is found from equations (10), (11) tode) o« w=5/4er/o"
for Coulomb interaction andd(w) o @®H@™MY?d/DY*/4=1 for short-range interaction.
Complete numerical results are shown in figure 1. They are in good agreement with previous
calculations [20, 18] as well as with experimental data [4].

(ii) The incompressible casaVithin the single-pole approximation [1 (¢ — 0) ~
Apo/2aq®l*, where A is the collective excitation gap at = 0, anda = (1 — v)/8v is



Letter to the Editor L783

4 \

0 0.2 0.4 0.6 0.8 1
w (e%/1)

Figure 1. The spectral function for a compressible liquidat 0.3 with short-range interactions

(d = 13, dashed curve), with long-range interactions (dotted curve) and for an incompressible
liquid atv = 1/3 with short-range interactions (samiefull curve, thes-function peak ato = 0
contains around 8% of the spectral strength). In all cases we Kised 0.

derived from the Laughlin wavefunction at filling factors= 27/%p, = 1/0dd integer

[2, 10]. Using equation (14) we find at long wavelength= (Aw/2000)*/? independently

of ¢g. This formula can be used to deduce the valuguof A = lim,_,ow, is known.
Alternatively, one can substitute = u. from the classical Wigner crystal and obtain
A, = 0.39W¥?(1—v)~te?/l, which givesAyz = 0.11%/1, Ays = 0.0442/1 and

A17 = 0.02%?/1. These results are in good agreement with variational estimates [10, 29],
with the exception of the first one which is almost 30% lower than the variational one, but
compares favourably with exact-diagonalization studies [30].

The calculation of the spectral function is more subtle. Straightforward application
of the linear response formulae (10)—(15) is incorrect, because the addition (or removal)
of charge at pointR creates a compressible region in the middle of the liquid, changing
the topology of the incompressible region from simply to doubly connected. The change
in topology can be taken into account in the following manner. We stipulate that the
bulk modulus kernetp3% ~1(7,7') has the form characteristic of an incompressible liquid
(namely,|F — 7'|?log |¥ — 7'|) when both# and7’ are within the incompressible region, but
it is given by the local formkK.8(¥ — ') when either7 or ¥’ are within the compressible
‘core’ of the excitation. Because the size of the core region is microscopic, its presence
does not significantly affect the frequencies of the long-wavelength modes. On the other
hand, in the ‘electron—phonon’ matrix element, given by equation (15), we must use
Ki(g) ~ K. K pgv(q>, becauser is inside the core region. Within this scheme, the
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calculation of the spectral function can be straightforwardly carried out. In figure 1, we
plot the results fon = 1/3. We have useg-dependenk andu in order to fit accurately

the collective mode dispersion and structure factor [10] at fipitdhe essential difference
between this and the compressible case is the appearancé-fofnation peak atv = 0,

which now corresponds to the energy for the addition of three quasiparticles or quasiholes
[31]. The strength of thé-function is

—exp[ Z|M|/w]

which would have vanished in the compressible case, doebs not vanish here because
of the gap The presence of the peak reflects the ability of the incompressible liquid to
accommodate the incoming electron as a localized topological defect of the initial state,
without creating collective excitations. The incoherent part of the spectral function, at
higher frequencies, corresponds to the creation of additional collective excitations.

(2) Edge dynamicsThe case of a smooth compressible edge has been treated in previous
publications [16]. Here we focus on the case afterpedge, which is directly relevant to
the interpretation of recedteral tunnelling experiments by Charad al and Graysoret al
[6], and which has recently attracted widespread theoretical interest [32]. Let us consider
a straight edge along thegaxis, and leteEx be the gradient of the confinement potential
at the edge. The equilibrium densipg is assumed to be uniform for < 0, and zero
for x > 0. We believe this to be approximately true, because the Coulomb energy tends
to suppress charge inhomogeneities on a sufficiently macroscopic scale. We note that this
‘weak-incompressibility’ assumption has nothing to do with the ‘strong incompressibility’
responsible for the quantum Hall effect. The presence of the edge electric field breaks
the rotational symmetry of the Hamiltonian (1), and can be taken into account with the
additional term [33]

Hedge_ / o(Pii(7) - E dF. (16)

With this term included into the eigenvalue problem (4), we obtain a set of solutions, bound
to the edge, which satisfy the condltloﬁ3g =0 andV x g = 0forx < 0. Neglecting the
corrections arising from the long range of the Coulomb interaction, they obey the equation
of motion

_Iwga(;:) = Vé€yp aﬁgx(F) (17)
wherev = cE/B is the classical drift velocity. The orthonormal solutions are {for 0)
8,(F) = g% (& — i) (18)

whereq > 0 is the wavenumber along the edge, and the eigenvalues, atevg. They

are analogous to gravity waves on the surface of a liquid. Because there is neither density
change nor shear strain in the interior of the system, these solutions do not depend on
the bulk elastic constants. The use of elasticity theory is justified at smnaihce the
displacement field: is slowly varying.

The effective edge dynamics can be derived from the full dynamics by projecting the
latter onto the subspace spanned by the edge-wave solutions of equation (18). The chief
physical assumption is that any electron tunnelliagrally into the system can and will be
accommodated via the creation of edge-wave deformations. Within this subspace, we can
define an ‘edge density’ operator

poI%y) = / 55(x. v) dx = poiis (0, y)
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where the bar denotes projection onto the edge-wave subspace, i.e., for instance,

i (0.y) = (1/py*) Y q"*[b,€" + bfe ],
q>0

It is easy to verify that the edge density satisfies the standard Kac—Moody algebra [8]
pedee pf‘;ﬁ = (vq/2m)8,, Wherev is the bulk filling factor. Thus, we have deduced

the dynamics of the chiral Luttinger liquid at the edge from a projection of the canonical
dynamics of displacement fields in the bulk. The edge tunnelling operator, satisfying the
condition [/ (y), p®%9y")] = ¥ (y)3(y — y') in the edge-wave subspace, can be written in

a form similar to equation (8), wit®® — y, the sum running over the edge modes, and the
matrix elementM, (y) = v(2rq/v)/?e74¥. Use of equations (10) and (11) then leads to
the conclusion that the tunnelling current must vanish, at low BiaasV/*. This result is

in good agreement with the experimental findings, and the present derivation would explain
why the tunnelling exponent does not seem to depend on whether the bulk exhibits the
fractional quantum Hall effect or not. However, both the projection onto the edge-wave
subspace, and the use of the nonfermionic operétdo describe the tunnelling, lack a
rigorous justification.

In summary, we have developed a magneto-elastic bosonization scheme for the long-
wavelength dynamics of the 2DEG in the LLL. Our results show that this scheme can
provide a unified description of different physical effects in the bulk and at the edge of this
system.

This work was supported by NSF grant No DMR-9706788. One of us (GV) wishes to thank
| Aleiner and L Glazman for a useful discussion at the beginning of this work.
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