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Dynamics of the two-dimensional electron gas in the lowest
Landau level: a continuum elasticity approach
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Abstract. We develop a bosonization scheme for the collective dynamics of a spinless two-
dimensional electron gas (2DEG) in the lowest Landau level. The system is treated as a
continuous elastic medium, and quantum commutation relations are imposed between orthogonal
components of the elastic displacement field. The theory provides a unified description of bulk
and edge excitations of compressible and incompressible phases and allows the calculation
of the electronic tunnelling current, yielding results which are in good agreement with recent
experiments at the edge and in the bulk of the 2DEG.

The two-dimensional electron gas (2DEG) in a high magnetic field such that all the electrons
reside in the lowest Landau level (LLL) provides an extraordinarily rich laboratory to
test ideas about the ‘non-Fermi-liquid’ behaviour of strongly correlated electrons [1]. The
incompressible quantum liquid state introduced by Laughlin [2] to explain the fractional
quantum Hall effect [3] at rational filling factors; the pseudogap in the tunnelling density
of states observed at generic (compressible) densities [4]; the likely formation of a Wigner
crystal at low density [5]; and the realization [6] that the edges of this system behave as
a ‘chiral Luttinger liquid’ [7–9] at essentially all filling factors, are prime examples of this
richness.

A theoretical treatment of the system is notoriously difficult, since the electron–electron
interaction cannot be treated perturbatively. Several nonperturbative approaches have been
developed, such as the variational theory of Laughlin [2], extended to the collective
dynamics by Girvinet al [10], and, more recently, the boson or fermion Chern–Simons
theories [11–14], which replace the original electrons with composite particles for which the
mean-field treatment is a reasonable starting point. All these theories are designed to work
best at some special, rational filling factors, such as 1/3, 1/2 etc. Another fruitful line of
attack has been the hydrodynamic treatment of density fluctuations: this allows bosonization
of the edge excitations of the 2DEG [15–17], but fails to reproduce the spectrum of collective
excitations in the bulk.

The purpose of this letter is to outline a novel approach to the linear dynamics of a
generaluniform or nonuniform distribution of electrons in the LLL. Unlike previous theories
[10–18], the present one treats bulk and edge excitations of compressible and incompressible
states on an equal footing. Under physically motivated assumptions, we shall argue that
the 2DEG is dynamically equivalent to a set of noninteracting bosons, and we shall give a
prescription for expressing the electron tunnelling operator in terms of these bosons [19].
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The basic idea of our approach is suggested by the similarity between the local
structure of the 2DEG in the LLL and that of a Wigner crystal (this fact was exploited
by Johansson and Kinaret [20] to set up an ‘independent-boson model’ for the tunnelling
spectral function; see also reference [18] for a derivation of their ‘independent-boson
model’ from diagrammatic many-body theory). In the absence of real crystalline order,
we propose to treat the electrons, at a macroscopic level, as a continuous elastic medium
characterized by an equilibrium densityρ0(Er), and by a local elastic displacement field
Eu(Er, t), such that the volume element which is located atEr in the ground state is found at
Er + Eu(Er) in the excited state considered. The time-dependent density is, to first order in
Eu, ρ(Er, t) = ρ0(Er)− E∇ · [ρ0(Er)Eu(Er, t)] ≡ ρ0(Er)+ δρ(Er, t). We ignore the spin in this letter.
Under the assumption that both the equilibrium density and the displacement areslowly
varying on the scale of the magnetic lengthl = (h̄c/eB)1/2 (whereB is the magnetic field)
the effective long-wavelength Hamiltonian in the LLL is then

H = 1

2

∫
dEr
∫

dEr ′ δρ(Er)
(

e2

|Er − Er ′| − χ̃
−1(Er, Er ′)

)
δρ(Er ′)

+
∫

dEr µ [ρ0(Er)
]∑
α,β

[
sαβ(Er)− 1

2
δαβ E∇ · Eu(Er)

]2

(1)

whereχ̃−1(Er, Er ′) is the inverse of theproper static density–density response function [21],
µ is the shear modulus (discussed below),sαβ ≡ [∂uα(Er)/∂rβ + ∂uβ(Er)/∂rα]/2 is the strain
tensor, andα, β are cartesian indices. Equation (1) generalizes the Hamiltonian of classical
elasticity theory by [22] taking into account the long range of the Coulomb interaction, and
of χ̃(Er, Er ′) in the incompressible states [10].

The second term of equation (1) is an essential and novel feature of the present approach.
The physical idea is that the strongly correlated electron fluid is very viscous: hence, the
time τ during which a density fluctuation relaxes to equilibrium is much longer than the
characteristic timescale of the linear dynamics. It follows that, over a range of frequencies
1/τ � ω . e2/h̄l, the system should behave like an elastic solid, characterized by a
nonvanishing shear modulus and negligible dissipation. Only on a longer timescaleω . 1/τ
does viscous damping become important and the shear modulus drop to zero. In this letter
we shall assume that 1/τ → 0, for long-wavelength fluctuations, sufficiently rapidly to
justify the use of the Hamiltonian (1) at essentially all relevant frequencies. We believe this
assumption to be fully justified for the incompressible states, since these are known to be
free of dissipation. It should also be qualitatively correct for general compressible states,
to the extent that the local structure of correlations resembles that of a Wigner crystal [23].

The algebra of the displacement operatorsux, uy , in the LLL, is deduced from the
canonical quantization condition for the hydrodynamical momentum and displacement fields
[pα(Er), uβ(Er ′)] = −iδ(Er − Er ′)δαβ , by projecting out the higher Landau levels, i.e. averaging
over the fast cyclotron motion. This leads to

[uα(Er), uβ(Er ′)] = −iεαβδ(Er − Er ′) l2/ρ0(Er) (2)

whereεαβ is the two-dimensional Levi–Civita tensor.
Bosonization of (1) is accomplished by using

uα(Er) = l

ρ
1/2
0 (Er)

∑
n>0

[
bng
∗
nα(Er)+ b†ngnα(Er)

]
(3)

wherebn andb†n are boson operators, satisfying the usual algebra [bn, b
†
n′ ] = δnn′ etc. The

functionsgnα(Er) (g∗nα(Er)), with n > 0, are the positive- (negative-) frequency solutions of
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the eigenvalue problem∫
Hαβ(Er, Er ′)gnβ(Er ′) dEr ′ = ωngnα(Er) (4)

which is equivalent to the classical equation of motion in the limit of infinite magnetic field.
(We adopt the convention of summing over repeated cartesian indices.) The operatorHαβ
is given by

Hαβ(Er, Er ′) = −il2ρ1/2
0 (Er)εαγ

[
∂γ ∂
′
βχ
−1(Er, Er ′)] ρ1/2

0 (Er ′)

+ i
l2

ρ0(Er)εαγ
[
∂β∂
′
γ − ∂γ ∂ ′β + δγβ∂η∂ ′η

] [
δ(Er − Er ′)µ] (5)

whereχ−1(Er, Er ′) ≡ χ̃−1(Er, Er ′)− e2/|Er − Er ′|, and∂α and∂ ′β denote derivatives with respect
to rα andr ′β respectively. It is Hermitian with respect to the scalar product

(f, g) ≡
∫
f ∗α (Er)iεαβgβ(Er) dEr

and its eigenvalues are therefore real. For each eigenfunctiongn with positive eigenvalue
ωn, there is a complex conjugate oneg∗n ≡ g−n with negative eigenvalue−ωn. These
eigenfunctions can be chosen to satisfy orthonormality relations(gn, gm) = sgn(n)δnm (n
andm can now have either sign) [24]. The ‘completeness relation’ has the form∑

n>0

[gnα(Er)g∗nβ(Er ′)− g∗nα(Er)gnβ(Er ′)] = iεαβδ(Er − Er ′). (6)

These equations guarantee that the commutation relation (2) is satisfied. Then, substitution
of equation (3) into equation (1) yields the Hamiltonian in the desired form

H =
∑
n>0

(b†nbn + 1/2)ωn.

Our next step is to construct the electron tunnelling operatorψ( ER). This operator is
expected to create a Gaussian density perturbation nearER and no change in the vorticity
ρv(Er) ≡ −εαβ∂α[ρ0(Er)uβ(Er)] [25]:

[ψ( ER), ρ(Er)] = ψ( ER) exp[−|Er − ER|2/2l2]/2πl2 (7)

and [ψ( ER), ρv(Er)] = 0. The solution has the form

ψ( ER) = C ER exp

[
−
∑
n>0

(
M∗n( ER)
ωn

bn − Mn( ER)
ωn

b†n

)]
(8)

where the ‘electron–phonon’ matrix elementsMn( ER) are written as

Mn( ER) =
∫

exp[−|Er − ER|2/2l2]M̃n(Er) dEr/2πl2

and

M̃n(Er)
ωn

= i

2π

∫
εαβ

gnα(Er ′)
ρ

1/2
0 (Er ′)l

∂β log |Er − Er ′| dEr ′ (9)

andC ER is an operator which commutes with the bosons and decreases the total particle
number by one [26]. A serious deficiency of the tunnelling operators is that they fail to
satisfy fermionic anticommutation rules at different points: this defect should not have
major consequences for the calculation of the tunnelling current, as long as the tunnelling
electron remains essentially distinguishable from the pre-existing ones.
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The calculation of the local Green’s functionG( ER, t) = −i〈T ψ( ER, t)ψ†( ER, 0)〉 can be
carried out by standard techniques [27, 20]. Here we simply report the zero-temperature
result for the integral equation connecting the electronic spectral functionA( ER,ω) (the
Fourier transform ofG( ER, t)) to the collective excitation spectrum:

ωA( ER,ω) =
∫ ω

0
g( ER,�)A( ER,ω −�) d� (10)

whereω > 0 and

g( ER,�) = 1

�

∑
n>0

|Mn( ER)|2δ(�− ωn) (11)

is closely related to the local dynamical structure factor of the liquid. The above equations
constitute a complete scheme for the calculation of single-particle and collective properties
of a general distribution of electrons in the LLL. We now discuss some specific examples.

(1) The uniform 2DEG. Let ρ0 be the uniform density. The normalized eigenfunctions
of equation (4) are

gEqL(Er) = iql(µ/2ωqρ0)
1/2ei Eq·Er (12)

and

gEqT (Er) = (ql)−1
(
ωqρ0/2µ

)1/2
ei Eq·Er (13)

where

ωq = µ1/2

(
v(q)+ K(q)+ µ

ρ2
0

)1/2

(ql)2 (14)

is the frequency of the mode at wavevectorEq, v(q) is the Fourier transform of the electron–
electron interaction,K(q) = −ρ2

0χ̃
−1(q) is theq-dependent bulk modulus, and the labels

L (longitudinal) andT (transverse) refer to the components parallel and perpendicular toEq.
The electron–phonon matrix element of equation (9) has the form

Mq(Er) =
[
v(q)+ KEr (q)+ µ

ρ2
0

]
e−q

2l2/2ρq(Er) (15)

whereρq ≡ −iqlρ1/2
0 gqL(Er) and

KEr (q) ≡ −ρ2
0

∫
χ̃−1(Er − Er ′) exp[iEq · (Er ′ − Er)] dEr ′.

(The reason for the apparently unnecessary subscriptEr will become clear below.)
We now distinguish two cases:

(i) The compressible case.limq→0K(q) = Kc is finite, and small compared to the
Coulomb repulsionρ2

0v(q). The value ofµ can be approximated by that of a classical
Wigner crystal, namely,µ ∼ µc = 0.09775ρ0(e

2/l)ν1/2 [28]. The long-wavelength modes
have frequenciesωq ∝ q3/2 for Coulomb-like interaction(v(q) = 2πe2/q) andωq ∝ q2 for
short-range interaction(v(q) = e2d). The low-frequency behaviour (where ‘zero’ frequency
is the chemical potential) is found from equations (10), (11) to beA(ω) ∝ ω−5/4e−γ /ω

1/2

for Coulomb interaction andA(ω) ∝ ω(1+(2.7ν)
1/2d/l)1/2/4ν−1 for short-range interaction.

Complete numerical results are shown in figure 1. They are in good agreement with previous
calculations [20, 18] as well as with experimental data [4].

(ii) The incompressible case.Within the single-pole approximation [10]K(q → 0) '
1ρ0/2αq4l4, where1 is the collective excitation gap atq = 0, andα = (1− ν)/8ν is
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Figure 1. The spectral function for a compressible liquid atν = 0.3 with short-range interactions
(d = 13l, dashed curve), with long-range interactions (dotted curve) and for an incompressible
liquid at ν = 1/3 with short-range interactions (samed, full curve, theδ-function peak atω = 0
contains around 8% of the spectral strength). In all cases we usedKc = 0.

derived from the Laughlin wavefunction at filling factorsν ≡ 2πl2ρ0 = 1/odd integer
[2, 10]. Using equation (14) we find at long wavelengthωq = (1µ/2αρ0)

1/2 independently
of q. This formula can be used to deduce the value ofµ if 1 = limq→0ωq is known.
Alternatively, one can substituteµ = µc from the classical Wigner crystal and obtain
1ν = 0.391ν3/2(1− ν)−1e2/l, which gives11/3 = 0.11e2/l, 11/5 = 0.044e2/l and
11/7 = 0.025e2/l. These results are in good agreement with variational estimates [10, 29],
with the exception of the first one which is almost 30% lower than the variational one, but
compares favourably with exact-diagonalization studies [30].

The calculation of the spectral function is more subtle. Straightforward application
of the linear response formulae (10)–(15) is incorrect, because the addition (or removal)
of charge at pointER creates a compressible region in the middle of the liquid, changing
the topologyof the incompressible region from simply to doubly connected. The change
in topology can be taken into account in the following manner. We stipulate that the
bulk modulus kernel−ρ2

0χ̃
−1(Er, Er ′) has the form characteristic of an incompressible liquid

(namely,|Er − Er ′|2 log |Er − Er ′|) when bothEr andEr ′ are within the incompressible region, but
it is given by the local formKcδ(Er − Er ′) when eitherEr or Er ′ are within the compressible
‘core’ of the excitation. Because the size of the core region is microscopic, its presence
does not significantly affect the frequencies of the long-wavelength modes. On the other
hand, in the ‘electron–phonon’ matrix element, given by equation (15), we must use
KEr (q) ' Kc � ρ2

0v(q), becauseEr is inside the core region. Within this scheme, the
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calculation of the spectral function can be straightforwardly carried out. In figure 1, we
plot the results forν = 1/3. We have usedq-dependentK andµ in order to fit accurately
the collective mode dispersion and structure factor [10] at finiteq. The essential difference
between this and the compressible case is the appearance of aδ-function peak atω = 0,
which now corresponds to the energy for the addition of three quasiparticles or quasiholes
[31]. The strength of theδ-function is

Z = exp

[
−
∑
q

|Mq |2/ω2
q

]
which would have vanished in the compressible case, anddoes not vanish here because
of the gap. The presence of the peak reflects the ability of the incompressible liquid to
accommodate the incoming electron as a localized topological defect of the initial state,
without creating collective excitations. The incoherent part of the spectral function, at
higher frequencies, corresponds to the creation of additional collective excitations.

(2) Edge dynamics. The case of a smooth compressible edge has been treated in previous
publications [16]. Here we focus on the case of asharpedge, which is directly relevant to
the interpretation of recentlateral tunnelling experiments by Changet al and Graysonet al
[6], and which has recently attracted widespread theoretical interest [32]. Let us consider
a straight edge along they-axis, and leteEx̂ be the gradient of the confinement potential
at the edge. The equilibrium densityρ0 is assumed to be uniform forx < 0, and zero
for x > 0. We believe this to be approximately true, because the Coulomb energy tends
to suppress charge inhomogeneities on a sufficiently macroscopic scale. We note that this
‘weak-incompressibility’ assumption has nothing to do with the ‘strong incompressibility’
responsible for the quantum Hall effect. The presence of the edge electric field breaks
the rotational symmetry of the Hamiltonian (1), and can be taken into account with the
additional term [33]

H edge= e
∫
ρ(Er)Eu(Er) · EE dEr. (16)

With this term included into the eigenvalue problem (4), we obtain a set of solutions, bound
to the edge, which satisfy the conditionsE∇ · Eg = 0 and E∇× Eg = 0 for x < 0. Neglecting the
corrections arising from the long range of the Coulomb interaction, they obey the equation
of motion

−iωgα(Er) = vεαβ ∂βgx(Er) (17)

wherev = cE/B is the classical drift velocity. The orthonormal solutions are (forx < 0)

Egq(Er) = q1/2eqx−iqy(x̂ − iŷ) (18)

whereq > 0 is the wavenumber along the edge, and the eigenvalues areωq = vq. They
are analogous to gravity waves on the surface of a liquid. Because there is neither density
change nor shear strain in the interior of the system, these solutions do not depend on
the bulk elastic constants. The use of elasticity theory is justified at smallq since the
displacement fieldEu is slowly varying.

The effective edge dynamics can be derived from the full dynamics by projecting the
latter onto the subspace spanned by the edge-wave solutions of equation (18). The chief
physical assumption is that any electron tunnellinglaterally into the system can and will be
accommodated via the creation of edge-wave deformations. Within this subspace, we can
define an ‘edge density’ operator

ρedge(y) ≡
∫
δρ̄(x, y) dx = ρ0ūx(0, y)



Letter to the Editor L785

where the bar denotes projection onto the edge-wave subspace, i.e., for instance,

ūx(0, y) ≡ (l/ρ1/2
0 )

∑
q>0

q1/2[bqeiqy + b†qe−iqy ].

It is easy to verify that the edge density satisfies the standard Kac–Moody algebra [8]
[ρedge
q , ρ

edge
−q ′ ] = (νq/2π)δqq ′ where ν is the bulk filling factor. Thus, we have deduced

the dynamics of the chiral Luttinger liquid at the edge from a projection of the canonical
dynamics of displacement fields in the bulk. The edge tunnelling operator, satisfying the
condition [ψ(y), ρedge(y ′)] = ψ(y)δ(y − y ′) in the edge-wave subspace, can be written in
a form similar to equation (8), withER→ y, the sum running over the edge modes, and the
matrix elementMq(y) = v(2πq/ν)1/2e−iqy . Use of equations (10) and (11) then leads to
the conclusion that the tunnelling current must vanish, at low biasV , asV 1/ν . This result is
in good agreement with the experimental findings, and the present derivation would explain
why the tunnelling exponent does not seem to depend on whether the bulk exhibits the
fractional quantum Hall effect or not. However, both the projection onto the edge-wave
subspace, and the use of the nonfermionic operatorψ to describe the tunnelling, lack a
rigorous justification.

In summary, we have developed a magneto-elastic bosonization scheme for the long-
wavelength dynamics of the 2DEG in the LLL. Our results show that this scheme can
provide a unified description of different physical effects in the bulk and at the edge of this
system.

This work was supported by NSF grant No DMR-9706788. One of us (GV) wishes to thank
I Aleiner and L Glazman for a useful discussion at the beginning of this work.

References

[1] Das Sarma S and Pinczuk A (ed) 1997Quantum Hall Effects(New York: Wiley)
[2] Laughlin R B 1983Phys. Rev. Lett.50 1395
[3] Tsui D C, Stormer H L and Gossard A C 1982Phys. Rev. Lett.48 1559
[4] Eisenstein J P, Pfeiffer L N and West K W 1992Phys. Rev. Lett.69 3804
[5] For a recent review of the experimental situation see reference [1] ch 9 and references therein.
[6] Chang A M, Pfeiffer L N and West K W 1996Phys. Rev. Lett.77 2538

Grayson M, Tsui D C, Pfeiffer L N, West K W and Chang A M 1998 Phys. Rev. Lett.80 1062
[7] Haldane F D M 1981J. Phys. C: Solid State Phys.14 2585
[8] Wen X G 1990Phys. Rev.B 41 12 838

Wen X G 1990 1991Phys. Rev.B 44 5708
Wen X G 1992Int. J. Mod. Phys.B 6 1711

[9] Kane C L and Fisher M P A 1997 Quantum Hall Effectsed S Das Sarma S and A Pinczuk (New York:
Wiley) ch 4

[10] Girvin S M, MacDonald A H and Platzman P M 1986Phys. Rev.B 33 2481
[11] Zhang S-C, Hansson H and Kivelson S 1989Phys. Rev. Lett.62 82

Read N 1989Phys. Rev. Lett.62 86
Lee D H and Fisher M P A 1989Phys. Rev. Lett.63 903

[12] Jain J K 1989Phys. Rev. Lett.63 199
See also reference [1] chs 6 and 7.

[13] Halperin B I, Lee P A and Read N 1993Phys. Rev.B 47 7312
See also
Song He, Platzman P M and Halperin B I 1993Phys. Rev. Lett.71 777

[14] Shankar R and Murthy G 1997Phys. Rev. Lett.79 4437
[15] Aleiner I L, Baranger H U and Glazman L I 1995 Phys. Rev. Lett.74 3435

Aleiner I L and Glazman L I 1994 Phys. Rev. Lett.72 2935
[16] Conti S and Vignale G 1996Phys. Rev.B 54 14 309



L786 Letter to the Editor

Conti S and Vignale G 1997J. Phys. E: Sci. Instrum.1 101
[17] Han J H and Thouless D J 1997Phys. Rev.B 55 1926

Han J H 1997Phys. Rev.B 56 15 806
[18] Haussmann R 1996Phys. Rev.B 53 7357
[19] For discussions of bosonization in more than one dimension see

Luther A 1979Phys. Rev.B 19 320
Haldane F D M 1992Varenna Lectures(Amsterdam: North-Holland)
Haldane F D M 1992Helv. Phys. Acta65 152
Houghton A and Marston J B 1993Phys. Rev.B 48 7790
Castro Neto A H and Fradkin E 1994Phys. Rev.B 49 10 877
Westfahl H, Castro Neto A H and Caldeira A O 1997Phys. Rev.B 55 7347

[20] Johansson P and Kinaret J M 1994Phys. Rev.B 50 4671
[21] Nozières P 1964The Theory of Interacting Fermi Systems(New York: Benjamin)
[22] Landau L D and Lifshitz E 1986Theory of Elasticity (Course of Theoretical Physics vol 7)3rd edn (Oxford:

Pergamon)
[23] The compressible state atν = 1/2 is anomalous from the present point of view, being the accumulation point

of an infinite series of incompressible states [13]. Its description requires the inclusion ofq-dependent
viscosity terms.

[24] The extra sign is caused by the property of the scalar product(f, f ) = −(f ∗, f ∗) together with the definition
g−n = g∗n . The fact that the positive-frequency eigenfunctions(n > 0) are the ones with positive norm
follows from the stability of the ground state.

[25] For example, in Laughlin’s thought experiment [2] to generate a quasiparticle, the addition of a magnetic
flux at the origin causes a radial displacement of all the electrons, with vanishing curl.

[26] Becausec ER(t) = c ERe−iµt the only effect ofc ER is to shift the zero of the energy to the chemical potentialµ.
[27] Mahan G D 1990Many-Particle Physics(New York: Plenum)
[28] Bonsall L and Maradudin A A 1977 Phys. Rev.B 15 1959
[29] Jain J K and Kamilla R K 1997Int. J. Mod. Phys.11 2621 and references therein
[30] Yoshioka D 1986J. Phys. Soc. Japan55 885
[31] Morf R and Halperin B I 1986Phys. Rev.B 33 2221
[32] Shytov A V, Levitov L S and Halperin B I 1998Phys. Rev. Lett.80 141

Khveshchenko D V 1997Preprint cond-mat/9710137
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